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Abstract

We consider a statistical decision problem faced by a two player organization whose members may not
agree on outcome evaluations and prior probabilities. One player is specialized in gathering information
and transmitting it to the other, who takes the decision. This process is modeled as a game. Qualitative
properties of the equilibria are analyzed. The impact of improving the quality of available information on
the equilibrium welfares of the two individuals is studied. Better information generally may not improve
welfare. We give conditions under which it will.
© 2006 Published by Elsevier Inc.
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1. Introduction

When a decision is made by a group rather than an individual, the twin tasks of acquiring
information on the one hand, and choosing a course of action on the other, are often delegated to
separate sets of individuals. If all members of the group share common evaluations of the outcomes
and have identical prior beliefs, then there is no conflict between the information-gatherers and
the action-takers. Information will be accurately transmitted by the former and optimally utilized
by the latter.

Here we study the situation that arises when interests do not coincide. When interests diverge,
complete transmission may result in actions that are suboptimal from the information-gatherers’
point of view. The situation is one of partial conflict. We model it as a game in which each of the
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two functions is executed by a single rational individual, neglecting conflicts among information-
gatherers or among agents controlling different aspects of the group’s action. We examine the Nash
equilibria of the resulting two-person game. In particular, we look at the effect on the expected
utilities of the two players of improvements in the available information.

The two individuals will be called the agent and the principal. Their joint decision problem is
to choose an action, ak , from the set A = {a1, . . . , aK}. The von Neumann–Morgenstern utility
levels of the two participants depend upon the chosen action and the realization of the state of
nature, �m, from the set � = {�1, . . . , �M}. These utilities can be represented by K ×M matrices
U = [ukm] and U ′ = [

u′
km

]
for the principal and the agent, respectively, where the elements are

the utilities realized if ak is chosen and �m occurs.
The agent receives an observation which is statistically related to the true state in �, and

transmits the observation to the principal. He might not do so truthfully. There are N possible
observations, yn, in the set Y = {y1, . . . , yN }. Allowing randomizations, his strategies can be
represented by an N × N Markov matrix R = [rnn′ ], where rnn′ is the probability that yn′ is
transmitted given that the actual observation is yn.

The principal chooses the action ak ∈ A given that the observation yn′ has been transmitted to
him. Again, allowing randomization, his strategy is an N × K Markov matrix Z = [zn′k] where
zn′k is the probability that ak is chosen given that yn′ was transmitted. 1

The statistical relationship between states and observations is called the information structure.
It is represented by an M × N Markov matrix � = [

�mn

]
, where �mn is the probability that yn is

observed if the true state is�m. The interpretation ofyn depends on the prior beliefs of the individual
in question. We allow different beliefs, � = (�1, . . . , �M) ∈ �M and �′ = (

�′
1, . . . , �

′
M

) ∈ �M

for the principal and agent, respectively, where �M is the set of all M-dimensional probability
vectors. The principal’s posterior probabilities, given an observation, can be derived from � and
� by Bayes rule. These posteriors are denoted

(
pP

1 , . . . , pP
N

)
, where pP

n ∈ �M is his posterior if
yn is observed, for n = 1, . . . , N . The probability of observing each yn is also implied by � and
�. Thus, we have a distribution of the posterior which is simply the measure over �M assigning
the corresponding weight to each of the pP

n . A similar argument applies for the agent.
If the strategy choices are Z and R, the expected utilities for the principal and agent, respectively

are

tr U��RZ (1.1)

and

tr U ′�′�RZ, (1.2)

where � and �′ denotes the square matrices with the vectors � and �′ on the diagonal and zeros
elsewhere. 2

1 Whenever possible we will try to follow the convention of labeling typical actions and states with indices k and m,
and the true and transmitted observations with n and n′.

2 The principal’s expected utility is

EUP =
∑
m

�m

∑
n

�mn

∑
n′

rnn′
∑
k

zn′kukm,

and a similar expression holds for the agent. The interpretation is straightforward. We simply sum up all the ways in which
each action could occur given each possible state, by multiplying the conditional probabilities of observations given states,
transmissions given observations, and actions given observations, and weighting by the prior probabilities.
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In this paper we examine the Nash equilibria of this game. A pair of Markov matrices (Z, R)

is a Nash equilibrium if Z maximizes (1.1) and R maximizes (1.2).
The main results of the paper can be viewed in the tradition of comparative statics. We are

interested in the consequences of changes in the information structure (Y, �) on the equilibria of
the game. Specifically, it is well-known that a partial ordering of information structures according
to the criterion of informativeness can be given a precise mathematical characterization. This is
an ordering based on single-person statistical decision theory. An information structure (Y, �) is
said to be more informative than

(
Y ′, �′) if, for any U and any �, the decision problem under the

former has at least as high a value as that under the latter. Using the notation developed above,
this can be restated as

max
Z

tr U��Z� max
Z′ tr U��′Z′,

where the maximum in each case is taken over all Markov matrices of the appropriate dimension.
Blackwell [1] has shown the following:

� is more informative than �′ if and only if
there exists a Markov matrix B such that �′ = �B.

We want to study the relation between this condition and conditions sufficient for the improve-
ment of the welfare of one or both of the players in our two-person organization. Because of the
compounding of game theoretic aspects with the usual decision theoretic issues, the welfare of
the two players may not be monotonic with respect to the quality of the information structure.
Several types of complication arise.

First, as in most games, there may be multiple equilibria. We have found it hard to analyze all
of them. However, a natural classification of equilibria can be given, and one type, which we call
partition equilibria, have a rather regular behavior. Moreover, we will give some arguments to the
effect that these equilibria have desirable properties, and are hence “more likely” to be observed.

Second, as in the case of general equilibrium theory, the set of equilibria is lower hemi-
continuous with respect to changes in the parameters. Comparative static results therefore tend
to be only local. Hence we focus on “small” improvements in the information structure, suitably
defined.

Third, and finally, the comparative static results turn out to be different for the two players. For
the agent, any small improvement in the information structure will improve his expected utility in
a partition equilibrium. For the principal this may not be the case. His welfare can be guaranteed
to be monotonic only when a very special kind of improvement in information is considered.

We define a success-enhancing improvement in information as one in which the probability
that the observation is uninformative decreases, with a corresponding equiproportional increase
in the probabilities of each of the other observations. If in the original information structure there
is no such observation, that is if the posterior is unequal to the prior for every possible observation,
then no success-enhancing improvements are possible. We show that small success-enhancing
improvements in information necessarily improve the welfare of the principal at any partition
equilibrium.

The remainder of the paper is organized as follows:
Section 2 covers the classification of types of equilibria and presents some genericity and

stability-like arguments to bolster the case for considering partition equilibria. Section 3 con-
tains the main comparative static results mentioned above. Section 4 contains several examples,
primarily designed to illustrate directions in which our results cannot be extended.
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2. Types of equilibria and their properties

2.1. Basic classification

We begin by examining some general features of the set of equilibria. First we need the following
definition.

We will call an M ×N ′ information structure �′ a partition of � if �′ = �PDP ′, where P and
P ′ are permutation matrices and D is an N × N ′ block diagonal Markov matrix in which each
block has rank one. When �′ has this form, it is as if there is a partition of the signal spaceY. Under
�′, if signal value yk occurs, the partition element containing yk is reported. Thus P rearranges
signal values so that those in a common partition element are clustered together; each block along
the diagonal of D corresponds to the report for one partition element; and P ′ rearranges the new
signal values in any arbitrary way.

Of prime importance in our later analysis are equilibria in which �R, the information the agent
transmits, is a partition of �, the information he receives. These will be called partition equilibria.
In addition, there are two types of non-partition equilibria, distinguished by whether the princi-
pal uses pure or mixed strategies. It is useful to begin with an example that illustrates all three
types.

Example 1. There are two states, two actions, and two observations: K = M = N = 2,
and

� = I, U =
(

1 0

0 1/2

)
, U ′ =

(
1 0

1 2

)
, � = �′ = (1/2, 1/2) .

The agent knows the true state. Both parties prefer action a2 in state �2. The principal strictly
prefers action a1 in state �1, but the agent is indifferent between the two actions.

One equilibrium of this game is the pair of strategies Z = I , R = I . Since the informa-
tion transmitted by the agent is a partition (the complete refinement partition) of the space of
observations, this is an example of a partition equilibrium.

Another equilibrium is one involving no transmission of information. This equilibrium is rep-
resented by any pair (Z, R) with

Z =
(

1 0

1 0

)
, R =

(
� 1 − �

� 1 − �

)
, � ∈ [0, 1] .

Note that for any �, RZ = Z. Clearly �′ = �R is a partition of � (the partition consisting of one
set, equal to the whole space), so that this is another example of a partition equilibrium.

Another type of equilibrium is the pair

Z = I, R =
(

1 − � �

0 1

)
, 0 < ��1/2.

Since �′ = �R is not a partition of �, this is not a partition equilibrium. Because the principal
uses two distinct, nonrandomized actions, we call this a determinate action equilibrium. Note
that randomization by the agent occurs only because in state �2 he is indifferent between the two
actions a1 and a2. Clearly this situation is non-generic.
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The last type of equilibrium is given by

Z =
(

1 0

� 1 − �

)
, R =

(
1/2 1/2

0 1

)
, � ∈ (0, 1) .

As in the previous case, �′ = �R is not a partition of �. However, in contrast to the previous case,
the principal is playing a mixed strategy. We call this a random action equilibrium. All equilibria
of this form are non-robust to perturbations in U ′. As long as Z has distinct rows the agent will not
remain indifferent between actions, following a perturbation of U. In this sense, these equilibria
are non-robust for the same reason as the previous type. However, in more general models the
determinate action equilibria, with non-randomized actions by the principal in all cases, is always
non-robust, whereas the random action equilibria may behave continuously in the parameters.
These differences are explored more fully below.

Returning to the equilibria with both players randomizing, we note that they are all unstable in
the sense that the agent has many optimal responses to Z, namely all R of the form

R =
(

� 1 − �

0 1

)
, � ∈ [0, 1] ,

and the principal has many optimal responses to R, namely all Z of the form given above. But if
the principal misperceives R even slightly, his optimal response is a non-randomized strategy, a Z
matrix composed of zeros and ones, and the outcome would depart markedly from the equilibrium
outcome.

2.2. Robustness of partition equilibria

In the rest of this section we will define partition, determinate action, and random action
equilibria precisely, and argue that partition equilibria are robust in ways that the others are not.
Specifically, we will show that determinate action equilibria are non-generic, and that random
action equilibria are unstable against small perturbations in either player’s strategy.

Formally, we will say that an equilibrium pair (Z, R) is a partition equilibrium if �′ = �R is
a partition of �; a determinate action equilibrium if �′ = �R is not a partition of �, and each
row of Z receiving positive weight under R has only a single positive element; a random action
equilibrium if �′ = �R is not a partition of �, and some row of Z receiving positive weight under
R has two or more nonzero entries.

Roughly speaking, we are presenting a “structural stability” argument to eliminate determinate
action equilibria from consideration and a “dynamic stability” argument to eliminate random
action equilibria. Of course, since we do not present any adjustment process, we do not actually
have any dynamics. The objection to random action equilibria is only meant to be suggestive.
Nevertheless, partition equilibria will generically pass both of these tests.

Theorem 2.1. The set of all
(
U ′, �

)
for which there is any determinate action equilibrium is

closed and null.

Proof. The existence of a determinate action equilibrium requires that for some observation the
agent is indifferent among some of the actions in A. It therefore suffices to show that the set
of
(
U ′, �

)
for which this indifference holds is closed and null. But this property is obvious:
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unless two rows of U ′ are identical (i.e. two actions are really the same) the set of posterior
probabilities under which there is more than one optimal action is of lower dimensions than
�M . Hence the set of all � matrices for which these posteriors arise is null. Closedness is
obvious. �

Theorem 2.2. Let (Z, R) be a random action equilibrium. Then generically in
(
U, U ′, �

)
there

exists a sequence of Markov matrices {R�} converging to R, such that

(i) each R� is an optimal response by the agent to Z;
(ii) the set of optimal responses by the principal to each R� is bounded away from Z.

Proof. Since (Z, R) is a random action equilibrium there exists yn ∈ Y and n1, n2 such that

(a) rnn1 > 0, rnn2 > 0, n1 �= n2;
(b) the row vectors zn1· and zn2· are distinct; and
(c) the row vector zn1· has at least two positive entries.

Since R is an optimal response to Z, it remains an optimal response if rnn1 is increased by �
and rnn2 is decreased by �. Let R� be the matrix with this change. Generically in �, this change
in the agent’s strategy alters the principal’s posterior beliefs when the signal yn1 is transmitted.
Generically in U, this change in his posterior beliefs destroys the equality of the expected utilities
under the actions represented in the mixture in the nst

1 row of Z. Hence Z is not a best response to
R�. Letting � → 0 establishes the claim. �

Theorem 2.3. Generically in
(
U, U ′, �

)
, if (Z, R) is a partition equilibrium, then,

(i) every row of Z for which the corresponding column of R has a positive entry is uniquely
determined in the optimal response to R;

(ii) R is the unique optimal response to Z and is itself a partition.

Proof. Obvious. �

The main comparative static results of this paper apply to the generic instance of partition
equilibria with the properties stated in Theorem 2.3. To delineate this class of equilibria more
sharply, we give the following definition.

A partition equilibrium (Z, R) is called an essential equilibrium if the following two conditions
hold:

(i) if Z′ is an optimal response to R then RZ′ = RZ;
(ii) if R′ is an optimal response to Z then R′Z = RZ.

The idea of essential equilibria is that the strategies of each player are “essentially” unique,
in the sense that choosing a different strategy from the optimal set does not alter the statistical
relationship between the observations and the action taken. An essential equilibrium remains
an equilibrium when either player chooses a different element in his set of optimal responses.
Essential equilibria also possess a kind of “stability” in that they are robust to small deviations
from optimal responses.

The distinction between partition equilibria in general and essential equilibria can be seen in
the following example, to which we will return in Section 3.



96 J.R. Green, N.L. Stokey / Journal of Economic Theory 135 (2007) 90–104

Example 2. There are two actions, two states, and two signals, K = M = N = 2, and

U = U ′ = I,

� = (0.4, 0.6) , �′ = (0.6, 0.4) ,

� =
(

0.6 0.4

0.4 0.6

)
.

Consider Z = R = I . It is straightforward to verify that this is a partition equilibrium. The
principal’s posterior probabilities are

pP
1 =

(
1
2 , 1

2

)
, pP

2 =
(

4
13 , 9

13

)
,

and, symmetrically, the agent’s are

pA
1 =

(
9
13 , 4

13

)
, pA

2 =
(

1
2 , 1

2

)
.

Therefore, the agent is indifferent between both actions when he receives the observation y2, and
the principal is indifferent when the agent transmits y1. The choices of Z = R = I are mutually
fortuitous, and neither requirement in the definition of an essential equilibrium holds. The non-
genericity of non-essential partition equilibria is responsible for their peculiar comparative static
properties, as we will see below.

3. Improvements in the information structure

In this section we present the main comparative static results of this paper. We ask the question:
When can one be sure, independent of a knowledge of the preferences and beliefs of the two
individuals, that one information structure is better than another in the sense of providing a higher
level of expected utility in equilibrium? The answer depends on whose welfare is being consid-
ered. Broadly speaking we find that the agent benefits from any improvement in the information
structure. The principal, however, can well be hurt. Only for one very special, though interesting,
type of improvement can we be sure that the principal benefits.

One further qualification is important to emphasize. As in many games, and as we have seen
in the examples of Section 2, there are often multiple equilibria. Because they can be regarded
as fixed points of a suitable mapping, they are continuous in the parameters of the problems
for almost all parameter values. However, at some critical points the set of equilibria changes
radically. Non-essential partition equilibria, for example, are likely to occur at such points.

For this reason our results are “local” in nature. We define a concept of “small” changes
in the information structure. The comparative static results described above apply to changes
in information that are sufficiently small, at an equilibrium that moves continuously in this
change.

The concept of small changes or, mathematically, a topology on the space of information
structures, is given by the following definition of convergence. It is natural to say that a sequence
of information structures {��} converges to �0 if for any decision maker with utility matrix U and
prior �, the sequence of values {V (U, �, ��) = maxD∈M tr U���D} converges to V (U, �, �0).
Obviously this is equivalent to the weak convergence of the distribution of the posteriors for any
strictly positive prior. Information structures representing a small improvement in information
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from �0 are those in a neighborhood of �0 which are also more informative in the sense of
Blackwell.

It is important to point out that the dimensionality of the likelihood matrices, that is to say the
number of possible observations N�, is not held constant. We are able to compare information
structures in which the qualitative nature of the signals are quite different.

We will now show that essential equilibria have an invariance property that is responsible for
the comparative static results that we will obtain.

Theorem 3.1. Let {�	} be a sequence of information structures converging to �0, and let (Z0, R0)

be an essential equilibrium for �0. There exists a sequence {(Z	, R	)} of equilibria corresponding
to {�	} with the property that {�	R	} converges to �0R0.

Proof. The proof is by construction of a sequence {(Z	, R	)} having the required properties.
For each ak ∈ A, let Bk ⊆ �M be the set of posterior beliefs for which the principal

strictly prefers ak to the other actions in A. Note that these sets are disjoint. Since (Z0, R0)

is essential, the principal’s posterior given any signal from �0R0 lies in the interior of one of
the sets Bk .

Let A0 ⊆ A be the subset of actions receiving positive weight under Z0, and for each ak ∈ A0,
let Ck ⊆ �M be the set of posterior beliefs for which the agent strictly prefers ak to the other
actions in A0. Since (Z0, R0) is essential, the agent’s posterior given any signal from �0 lies in
the interior of one of the sets Ck .

Let Ẑ be any matrix of appropriate dimension whose distinct rows are precisely the distinct
rows of Z0 receiving positive weight under R0. Select a subset J of these rows containing all
the distinct rows of Ẑ and no duplicates. Let R	 be any response to Ẑ that is optimal for the
agent, given the information structure �	 and subject to the constraint that only signals in J are
transmitted. By construction R� is also an unconstrained optimal response for the agent, given ��
and Ẑ.

Since {�	} converges to �0, as 	 → ∞, with probability approaching one the agent’s posteriors
given the signals in �	 lie in the interiors of the same sets Ck as they do under �0. Hence {�	R	}
converges to �0R0.

Finally, note that by construction the number of distinct signals transmitted under �	R	 is
the same as the number transmitted under �0R0. Hence for 	 sufficiently large the principal’s
posterior under any signal from �	R	 lies the interior of the set Bk corresponding to the action
selected by �	R	Ẑ. Hence Z	 = Ẑ is an optimal response for the principal, and the sequence
{(Z	, R	)} has the required properties. �

Theorem 3.2. Let (Z0, R0) be an essential equilibrium for the information structure �0. Let {�	}
be a sequence of information structures, each element of which is more informative than �0 (in
the sense of Blackwell), and such that {�	} converges to �0. Let {(Z	, R	)} be the sequence of
equilibria whose existence is established in Theorem 3.1. Then, for 	 sufficiently large, the agent
is better off under �	 with the equilibrium (Z	, R	) than under �	 with the equilibrium (Z0, R0).

Proof. As the rows of Z	 are precisely the distinct rows of Z0, by construction the agent is facing
a fixed decision problem and hence his welfare cannot diminish under any improvement in the
sense of Blackwell. �

The next example illustrates the role of the hypothesis that the equilibrium is essential.
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Example 3. There are four actions, four states, and three or four signals, K = M = 4, N0 = 3,
and N� = 4. The utilities are

U =

⎛
⎜⎜⎜⎜⎝

1 −b b 0

0 a −a 0

0 b −b 1

1 0 0 1

⎞
⎟⎟⎟⎟⎠ , U ′ =

⎛
⎜⎜⎜⎜⎝

0 d −d 0

0 c −c 0

0 −d d 0

−e −e −e −e

⎞
⎟⎟⎟⎟⎠ ,

where

0 < a < b, 0 < c < d, 0 < e.

Both agents have a uniform prior, � = �′ =
(

1
4 , 1

4 , 1
4 , 1

4

)
, and the information structures are

�� =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 (1 + �) /2 (1 − �) /2 0

0 (1 − �) /2 (1 + �) /2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ , �0 =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠ .

States �1 and �4 are perfectly revealed under both information structures. The more informative
system �� is useful only in distinguishing state �2 from �3.

Under �0 the posteriors are

p10 = (1, 0, 0, 0) , p20 = (0, 1/2, 1/2, 0) , p30 = (0, 0, 0, 1) ,

so both the principal and the agent are indifferent among the actions {a1, a2, a3} if y2 is observed:
each is a fair bet. Thus,

R̂ = I, Ẑ =
⎛
⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎟⎠ ,

is a partition equilibrium. The agent accurately reports the observation, and the principal chooses
an if yn is reported, for n = 1, 2, 3. The principal’s expected utility is 1

2 and the agent’s is 0.

This equilibrium is not essential, however. The principal is indifferent between Ẑ and the
strategy of taking action a4 all the time,

Z0 =
⎛
⎜⎝

0 0 0 1

0 0 0 1

0 0 0 1

⎞
⎟⎠ .

There is another partition equilibrium under �0, the no communication equilibrium. The prin-
cipal uses the strategy Z0 and the agent uses any Markov matrix R0 with rank one. The principal’s
expected utility is again 1

2 , but the agent’s is −e. This equilibrium is essential: RZ0 = R0Z0 for
any Markov matrix R, so the agent cannot affect the outcome; and the principal’s best response
to R0 is unique.

For � > 0, the only equilibrium is the no communication equilibrium. The principal uses
the strategy Z� that puts probability one on a4 in response to any report, and the agent uses
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any Markov matrix R� with rank one. The principal’s expected utility is again 1
2 and the

agent’s is −e.
To see why there are no other equilibria note that the posteriors under �� are

p1� = (1, 0, 0, 0) , p2� = (0, (1 + �) /2, (1 − �) /2, 0) ,

p4� = (0, 0, 0, 1) , p3� = (0, (1 − �) /2, (1 + �) /2, 0) .

Thus, the agent strictly prefers a1 to a2 if y2 is observed, and strictly prefers a3 to a2 if y3 is
observed: the former involves increasing the size of a favorable gamble, and the latter involves
comparing an unfavorable gamble with one that is favorable. Suppose the principal were to use
the strategy of playing a1 if y1 is reported, a2 if y2 or y3 is reported, and a3 if y4 is reported,
which under �� and accurate reporting is the analog of Ẑ. The agent would never report y2 or
y3. Instead he would report y1 or y4, which gives him an expected utility of d�/2 instead of the 0
he gets by reporting accurately. This would reduce the principal’s expected utility, however, and
since the principal can always guarantee himself an expected utility of 1

2 by ignoring the reports

and taking the action a4, he would do so. Therefore, the analog of the
(
R̂, Ẑ

)
equilibrium does

not exist for � > 0, and a sequence of the type described in Theorem 3.1 does not exist.

We now consider the principal’s welfare. Further conditions are required to guarantee that better
information raises the principal’s equilibrium expected utility. A modification of Example 2 is
useful in gaining insights to the results.

Example 4. As in Example 2, K = M = 2, and for �0 the number of distinct signals is N0 = 2.
However, for all 	 there are three possible observations, with the likelihood matrices

�	 =
(

.6 − �	 2�	 .4 − �	

.4 − �	 2�	 .6 − �	

)
,

where {�	} converges to zero. Clearly {�	} converges to the information structure of Example 2,

�0 =
(

.6 .4

.4 .6

)
.

Moreover {�	} is a sequence of improvements, in the sense of Blackwell. We modify the priors
so they are slightly more diffuse

� = (0.45, 0.55) , �′ = (0.55, 0.45) .

The other data of the example are unchanged, U = U ′ = I . Let y1 and y2 denote the signals
under �0, and y1, y2, y3 denote those under ��.

Under �0 it is straightforward to verify that Z = R = I is an essential partition equilibrium.
It results in an expected utility of 0.6 to each player.

For �� sufficiently small, the game with information structure �� has an essentially unique par-
tition equilibrium (other than the no-transmission equilibrium). The agent transmits the partition{
y1, y2

}
,
{
y3
}
, and in response the principal chooses a1 and a2, respectively. Thus action a1 is

taken when y2 is observed, as the agent prefers. The expected utilities at this equilibrium are
0.6 − �� and 0.6 + �� for the principal and the agent, respectively. Although the principal would
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rather have the agent transmit the partition
{
y1
}
,
{
y2, y3

}
, there is nothing he can do to enforce

this. Complete communication is not an equilibrium because the principal would choose a2 after
y2, making complete communication irrational for the agent. In this example the better informa-
tion structure entails a positive probability of a signal that causes the two players to disagree. The
principal loses because at equilibrium the information is used by the agent in a way opposite to
what the principal would like.

Our positive comparative static results rely on a condition that we will call success-enhancing.
The motivation for examining success enhancing improvements is that there are many situations

where one hopes to receive an informative observation but in fact nothing happens. Either the
experiment “fails” or the outcome is not available soon enough to be useful in making the decision.
Since many improvements in information reduce the failure rate or cut the average delay time
without affecting the quality of the experimental procedure itself, these results are of considerable
interest. The formal definition is as follows.

We will say that � is in standard form if

� =

⎛
⎜⎜⎝

�

...

�

(1 − �) �

⎞
⎟⎟⎠ ,

where ��0, � is an M × (N − 1) Markov matrix, and no two columns of � are proportional to
each other.

The first signal of an information structure in standard form represents the totally uninformative
observation: “dropping the test tube.” A success-enhancing improvement lowers the probability
of this observation and raises all others proportionately.

We will say that � is a success-enhancing improvement of �′ if

� =

⎛
⎜⎜⎝

�

...

�

(1 − �) �

⎞
⎟⎟⎠ , �′ =

⎛
⎜⎜⎝

�′

...

�′

(
1 − �′)�P

⎞
⎟⎟⎠ ,

where

0�� < �′ �1 and P is a permutation matrix.

Note that �′ and �′ are related by the garbling matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0




... (1 − 
) P




⎞
⎟⎟⎟⎟⎟⎠ where 
 ≡ �′ − �

1 − �
.

Finally, a small success-enhancing improvement is one in which �′ and � are close.
Whenever � is a success-enhancing improvement of �′ we can reorder the columns of �′ so

that the permutation matrix P referred to in the above definition is the identity. For the rest of this
section we will suppose that this is the case, as this in no way changes the structure of the game.
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With this normalization we can write

�′ = �D,

where D is the diagonal matrix whose diagonal entries are

d1 = �′

�
, dn = 1 − �′

1 − �
for n = 2, . . . , N. (3.1)

We will make use of this representation in the proof of the main theorem, which follows.

Theorem 3.3. Let (Z, R) be an essential equilibrium for �′ and let � be a small success-
enhancing improvement of �′. Then (Z, R) remains an equilibrium for � and the principal’s
expected utility cannot decrease.

Proof. That (Z, R) remains an equilibrium follows from an argument parallel to that used in the
proof of Theorem 3.1. The assertion that the principal’s expected utility cannot decrease will be
proven using the special structure of success-enhancing improvements. We will express �′ and
� in standard form and note that �′ = �D, where the elements of D are given by (3.1). The
principal’s expected utility under � is tr U��RZ and under �′ it is tr U��DRZ. Thus, the gain
in going from �′ to � is

� = tr RZU�� (I − D) . (3.2)

This quantity will be proven to be necessarily non-negative.
Using (3.1) we see that

I − D = (1 − dn) I − (d1 − dn) C

= �′ − �

1 − �
I − �′ − �

� (1 − �)
C,

where

C ≡

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0

... 0

0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Substituting into (3.2) we have

� = �′ − �

1 − �

[
tr RZU�� − 1

�
tr RZU��C

]
. (3.3)

Since � is in standard form its first column is the constant �, and we have

�C = �J, (3.4)

where J is the M × N Markov matrix

J ≡

⎛
⎜⎜⎝

1 0 · · · 0

...
...

. . .
...

1 0 · · · 0

⎞
⎟⎟⎠ .
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Substituting (3.4) into (3.3) we obtain

� = �′ − �

1 − �

[
tr RZU�� − tr RZU�J

]

= �′ − �

1 − �

[
tr U��RZ − tr U�JRZ

]
, (3.5)

where the second line uses the commutativity of matrix multiplication under the trace. The two
terms in brackets in (3.5) have straightforward interpretations. The first is the equilibrium expected
value of the principal under the better information structure. The second is the expected utility
he would obtain if he used the action matrix Z in a decision problem with information structure
JR. But this information structure is totally uninformative: it is an M × N Markov matrix that
contains the first row of R repeated M times. Therefore, the second term in brackets is at most
the expected value the principal could obtain by optimizing in a situation where no information
is available. This cannot exceed the first term, so the expression in brackets is nonnegative. Since
�′ − ��0, it follows that ��0.

We note that � is zero only if the principal is indifferent, in equilibrium, between Z and a rank
one matrix composed of a repeated row. Otherwise � is strictly positive. �

4. Comments and further examples

In this section we gather a few comments showing why the results above cannot be strengthened
and addressing some conjectures about the qualitative nature of the Nash equilibria.

1. Success-enhancing improvements in information have the property that the set of posterior
beliefs that can arise after seeing the observation remains fixed. One might imagine that this
property alone is responsible for the beneficial nature of the change.

An improvement in information from �′ to � can be called posterior-preserving if �′ = �D,
where D is a diagonal matrix, and �′ = �B, where B is a Markov matrix. Note that a non-
informative signal may not exist. If (Z, R) is an equilibrium for the information structure �′, then
we know that R is among the agent’s best responses to Z under �. The following example shows,
however, that the principal’s welfare may decrease if he plays Z and, moreover, that there may be
no possibility for him to achieve the former level of utility.

Let K = 2, M = 3, and N = 4. Consider the information structures

� =
⎛
⎜⎝

.8 0 0 .2

0 .9 0 .1

0 0 .8 .2

⎞
⎟⎠ , �′ =

⎛
⎜⎝

.6 0 0 .4

0 .8 0 .2

0 0 .6 .4

⎞
⎟⎠ .

It is easy to see that � is a posterior-preserving improvement of �′. The first three signals in either
case are perfect predictors of the state, while the fourth carries some information but does not
limit the set of states that are possible.

Let the utilities and priors be such that

U� =
(−1 1 −1

0 0 0

)
, U ′�′ =

(
1 1 −2

0 0 0

)
.
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The finest partition equilibria convey {y1, y2} , {y3, y4}. For example, the strategies

Z =

⎛
⎜⎜⎜⎜⎝

1 0

1 0

0 1

0 1

⎞
⎟⎟⎟⎟⎠ , R =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

1 0 0 0

0 0 1 0

0 0 1 0

⎞
⎟⎟⎟⎟⎠

constitute an equilibrium. In it expected utility for the principal is .2 under �′ but .1 under �.
More information has therefore been harmful.

Notice that even though � is strictly more informative that �′, �R is non-comparable to �′R.
For this particular utility function it is worse.

2. Even if the improvement in information is success enhancing, a discrete change from �′ to
� may be such that (Z, R) is no longer an equilibrium. R remains a best response to Z, but Z may
not be best against R.

An example, available from the authors on request, shows that all the equilibria under � may
be inferior for the principal to a given partition equilibrium for �′. Theorem 3.3 relies on the
changes being small enough so that (Z, R) persists as an equilibrium.

3. We investigated the conjecture that the common refinement of the partitions implicit in two
partition equilibria always corresponds to another partition equilibrium. A counterexample to this
conjecture is also available on request.

4. Crawford and Sobel [3] show that some more general results can be attained if a restricted set
of decision problems is considered. When utilities are concave in actions and states and both the
state space and the signal space are one-dimensional, all equilibria are partition equilibria. They
use this property to derive the comparative statics of both principal and agent welfare with respect
to changes in their preferences, obtaining specific results for changes that make their preferences
more similar to each other in a sense that they define.

5. Finally, it should be emphasized that the main results of this paper are crucially dependent
on the finiteness of the set of possible actions. These results are local in nature, as noted above in
point (2). The structure of our model is such that within a neighborhood of a given information
structure, partition equilibria are locally constant with respect to success-enhancing or posterior
preserving improvements. This enables us to evaluate welfare changes by examining the effect of
the improved information in a fixed equilibrium.

If there were a continuum of actions the neighborhood of local constancy might vanish. Chang-
ing information would induce locally continuous shifts in the equilibria. Welfare effects would
then depend upon the nature of these shifts, as well as on the difference in the quality of the
information.

Postlewaite [7] has provided us with an example of a game with a unique partition equilibrium
in which the principal’s welfare declines, for this reason, in response to a success-enhancing
improvement in the agent’s information.

5. Conclusions

We have examined a simple two-person game designed to represent the separation of functions
in an organization. It has been argued that although this game may have multiple equilibria, there
is one type of particular note. In analyzing the comparative statics of individual welfare with
respect to improvements in information, we have concentrated on this type of equilibrium.
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In general, improvements in information may be harmful for one or even both players. We
therefore tried to find restrictions on the nature of the improvement in information that imply that
it is surely beneficial.

For large shifts in the information structure, nothing can be said, in general. Locally, an arbitrary
improvement in the information structure will generically benefit the agent, but the principal may
be hurt. To guarantee that neither player is hurt by a small improvement in information, the change
must be “success-enhancing.” That is, it must represent a decrease in the probability of receiving
an uninformative observation and, correspondingly, proportional increases in the probabilities of
receiving all other observations.

There are many possible extension of this model. We will mention only two of them here.
Our analysis concentrated on restricting the information structure. An alternative is to look for

restrictions on utilities and priors. In this regard the paper by Crawford and Sobel [3] cited above
is relevant.

Our model is related to, but distinct from, the principal-agent problem that has been widely
discussed in the literature. There the agent plays the role of both information gatherer and decision
maker. The principal is present only to help offset risks by making contingent payments of a
transferable resource. We have no such resource, the essential feature of our model resting in the
separation of the information-gathering and decision-making functions within the organization.
The possibility of making such conditional payments would add an entirely new dimension to the
analysis. The principal might, for example, set up a payment schedule that would coax a more
accurate transmission out of the agent. Paralleling the principal-agent literature, it is probably best
to model this as the Stackelberg, rather than Nash, equilibrium of a game in which the principal is
the leader. We begin the study of this solution concept in a companion paper, Green and Stokey [5],
retaining the structure presented here in all other respects—including the absence of transferable
utility.
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